Nonlocal Electron Transport in Laser-produced Plasmas

|

Kinetic modeling on laser-produced plasmas

Atsushi Sunahara

Institute of Laser Engineering,
Osaka University

Kinetic Physics Workshop
Thursday, April 5t"- 7th 2016
at Lawrence Livermore National Laboratory



collaborators

Takashi Asahina
(Institute of Laser Engineering Osaka University)

Yuki Abe
(Institute of Laser Engineering Osaka University)

Tetsuo Ozaki
(National Institute of Fusion Science)

Tomoyuki Johzaki
(Hiroshima Univ.)

Shinsuke Fujioka
(Institute of Laser engineering Osaka University)

Hitoshi Sakagami
(National Institute of Fusion Science)
Hideo Nagatomo
(Institute of Laser Engineering Osaka University)

Hiroyuki Shiraga
(Institute of Laser engineering Osaka University)

Hiroshi Azechi
(Institute of Laser engineering Osaka University)

Kazuo Tanaka
(Dept. Engineering, Osaka University)



Q Fokker-Planck equation for nonlocal electron transport
in laser implosion

(O Spark generation experiment

(O Plan of developing Direct Simulation Monte Carlo
(DSMC) with Langevin dynamics

(O Particle in cell (PIC) simulation
on comparison of Braginskii and Ji-Held.



We have conducted the spark formation experiment by m
multiple reflection of laser inside CD shell.
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# 37955
Standard target 9beams with Cu coat

500um® 7umt CD shell
GXIl 100ps, 9beams
Laser F=3, 1.06pum
Energy =1719J

Although one-sideded laser irradiates the inner
surface of the shell, we observed the spark at the
center of the target.




Experiment m

@ Inner surface of 500um diameter 7um thickness CD shell was
irradiated by the one-sided GXIl 100ps, 1W, 1.7kJ,167um®
spot laser.

@ Laser intensity is order of 8x10'°W/cm?2.

Results

© From scattered light measurement, we estimate that 90% of
heating laser energy was input into the interior of the shell.

@ From neutron diagnostics, we obtained 3 x 107 DD yield, and
Ti = 4.1keV

© From x-ray diagnostics, we estimate the plasma density of ~
0.1 g/cm3.

@ We observed maximum expansion speed to be ~ 5x10A7 cm.s.



lon Temperature

We measured the ion temperature from neutron spectrum.
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With 2.4kJ input, we observed ion temperature of 4.1keV.




Density m

The energy distribution of Ly-8 emission (2.048 keV) from Al plasmas recorded and
compared with FLYCHK simulation. We estimated averaged electron density to be
1.4 X 1022 cm3, ~0.1g/cc
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Density of hot spark is estimated to be order of 0.1 g/cm?.
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Assuming pco = 0.1g/cc, collision length is calculated to
be Acc=8um, Aco=12um, and App=200um, respectively.



—=—p CD =0.01 g/cc
—=—-p CD = 0.1 g/cc
—=—p CD= 1.0g/cc w/o limit
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For Vel = 1TE8cm/s, beam DD neutron is negligible to the thermal component.
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1) G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of
Gas Flows, Claredon, Oxford (1994)



lon equation of motion
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Validation of thermal conductivity models
using 1D PIC simulation

Initial condition
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Ji-Held model was validated by the PIC simulation
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[*1] J.-Y. Ji and E. D. Held, Phys. Plasmas 20 (2013) 042114.



1D PIC simulation of laser ablation

* Target
— Carbon, fully ionized
— 0.2 umt
— n,=25n

critical
— Particles are
initially at rest
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Heat flux inhibition is confirmed by PIC simulation
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Summary

Nonlocal electron thermal transport is critical issue for the
laser-produced plasma, and direct-implosions.
Robust simulation scheme should be developed.

We conducted the hot spark generation experiment by
inner irradiation scheme. In order to analyze observation,
we are developing a DSMC code with Langevin dynamics.

Validation of thermal conductivity models under magnetic
fields using 1D PIC simulation has conducted.

— The simulation showed that Ji-Held model is valid and
Braginskii model has an error up to 28%.

Investigation of nonlocal transport in ablation plasmas
— 1D PIC simulation showed the flux inhibition.



Additional viewgraphs



0.35um 1ns pulse
900um CH shell with 20pm thickness
filled with 15atm of D2 gas

0.15 a— I , 30
\ 425 &
il .
0.10 - | > 20 3
' 2
~. r) S— 15 5
0os |- = G \ 410 =
\ 3
.\~ 5 __’_
000 ' . beded
0020 )

0oOls

~}
% 0010

0005

0.X%)
0.

Electron density scale length (zm)

100

0.2

ICA 4

Power{TW)
— [ ) [ o] L)
i o wn o

o

103809

1
—FP

— SH (f=007)

T I

3000

2000

1000

0

A
05

1.0
Time (ns)

04 06 08 10 12 14
Time {(ns)

!
15

L6

Electron emperature {¢V)




15atm of D2 gas

3atm of D2 gas 20atm of D2 gas

1ns square 1ns square 0.4ns square
(a) (b} (c)

3 | T ! 3 1 T T I SN RS SR S R S
[ {11 [ Ep

z 1 3

[ SH 1 | 1

000 SH
:: __: ;» (f LAV ;
3 1 i E \ | L JE

14 16 18 20 22

[
= 107
3
z
5
£ 1o
B
Z,

10:9
TSNS

Time {(ns)

16 18 20
Time {(ns)

22 26 30
Time {(ns)

2.2

BN
o0

Time-Dependent Electron Thermal Flux Inhibition in Direct-Drive Laser Implosions
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CD 500um®, 7umt, shell
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Star1D simulation confirmed that the front velocity of
rarefaction can reach to 3x initial sound velocity




Slower electrons contribute to the
conduction in magnetic fields

q= f (1/2)mv>vf (v)dv

_ Angular
_fg(v)dv J integration

Magnetic field shortens the
energy transport distance from
mean free path (~v?*) to Larmor
radius (~v).
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